Search results for " nucleosynthesis"

showing 10 items of 44 documents

Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single Star and Binary Merger Progenitor Models for SN 1987A

2019

We perform three-dimensional hydrodynamic simulations of aspherical core-collapse supernovae focusing on the matter mixing in SN 1987A. The impacts of four progenitor (pre-supernova) models and parameterized aspherical explosions are investigated. The four pre-supernova models include a blue supergiant (BSG) model based on a slow merger scenario developed recently for the progenitor of SN 1987A (Urushibata et al. 2018). The others are a BSG model based on a single star evolution and two red supergiant (RSG) models. Among the investigated explosion (simulation) models, a model with the binary merger progenitor model and with an asymmetric bipolar-like explosion, which invokes a jetlike explo…

010504 meteorology & atmospheric sciencesSupergiant starAstrophysics::High Energy Astrophysical PhenomenaBinary numberchemistry.chemical_elementNeutron starFOS: Physical sciencesHydrodynamical simulationAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesCore-collapse supernovaeAstrophysics::Solar and Stellar AstrophysicsRed supergiant010303 astronomy & astrophysicsMixing (physics)HeliumStellar evolutionary modelSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsSupernova dynamicSupernovaNeutron starchemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceExplosive nucleosynthesisSupergiantAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Cosmological bounds on neutrino statistics

2018

We consider the phenomenological implications of the violation of the Pauli exclusion principle for neutrinos, focusing on cosmological observables such as the spectrum of Cosmic Microwave Background anisotropies, Baryon Acoustic Oscillations and the primordial abundances of light elements. Neutrinos that behave (at least partly) as bosonic particles have a modified equilibrium distribution function that implies a different influence on the evolution of the Universe that, in the case of massive neutrinos, can not be simply parametrized by a change in the effective number of neutrinos. Our results show that, despite the precision of the available cosmological data, only very weak bounds can …

AstrofísicaCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsNeutrino properties01 natural sciencesPartícules (Física nuclear)symbols.namesakePauli exclusion principleHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesStatisticsAnisotropy010303 astronomy & astrophysicsPhysicsCosmologia010308 nuclear & particles physicsBig bang nucleosynthesisSpectrum (functional analysis)High Energy Physics::PhenomenologyObservableAstronomy and AstrophysicsCosmological neutrinos neutrino properties big bang nucleosynthesis cosmological parameters from CMBRCosmological parameters from CMBRHigh Energy Physics - Phenomenologysymbolsastro-ph.COBig bang nucleosynthesis; Cosmological neutrinos; Cosmological parameters from CMBR; Neutrino properties; astro-ph.CO; astro-ph.CO; High Energy Physics - Phenomenology; Astronomy and AstrophysicsCosmological neutrinosHigh Energy Physics::ExperimentBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Search for heavy neutral lepton production in K+ decays to positrons

2020

A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.

AstrofísicaNuclear and High Energy PhysicsHeavy neutral lepton kaon meson kaon decay positronPontecorvo–Maki–Nakagawa–Sakata matrixSocio-culturaleFOS: Physical sciencesNA62 experiment7. Clean energy01 natural sciencesNA62High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Positronkaon decays heavy neutral lepton SM extensionsPE2_2Big Bang nucleosynthesisSM extensionskaon physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)Large Hadron Colliderkaon decays010308 nuclear & particles physicshep-exSettore FIS/04Heavy neutral leptonlepton flavour violationFísicalcsh:QC1-999kaon mesonkaon decaykaon physics; lepton flavour violation; NA62positronProduction (computer science)High Energy Physics::Experimentkaonlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

Testing standard and nonstandard neutrino physics with cosmological data

2012

Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally pow…

AstrofísicaNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic background radiationFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologyPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino oscillationTelescope010303 astronomy & astrophysicsDigital sky surveyPhysicsHubble constantCosmologia010308 nuclear & particles physicsMatter power spectrumBig-bang nucleosynthesisCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionParameterssymbolsBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoData releaseAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

2017

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

AstrofísicanTOFQC1-999chemistry.chemical_elementNeutronAstrophysics01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Big Bang nucleosynthesisNucleosynthesisCERN0103 physical sciencesNuclear astrophysicsAstrophysics::Solar and Stellar AstrophysicsNeutron010306 general physicsNuclear ExperimentAstrophysics::Galaxy Astrophysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsPhysicsAlphaLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsStarschemistryLithiumHaloNucleosynthesisNucleosíntesi
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Probing secret interactions of eV-scale sterile neutrinos with the diffuse supernova neutrino background

2020

Sterile neutrinos with mass in the eV-scale and large mixings of order $\theta_0\simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $\phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_\phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter spa…

Astrophysics and AstronomySterile neutrinoParticle physicsScale (ratio)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesNeutrino oscillation010303 astronomy & astrophysicsParticle Physics - Phenomenologymedia_commonastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gauge boson010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phAstronomy and AstrophysicsUniverse3. Good healthSupernovaHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

PArthENoPE reloaded

2018

We describe the main features of a new and updated version of the program PArthENoPE, which computes the abundances of light elements produced during Big Bang Nucleosynthesis. As the previous first release in 2008, the new one, PArthENoPE 2.0, will be soon publicly available and distributed from the code site, http://parthenope.na.infn.it. Apart from minor changes, which will be also detailed, the main improvements are as follows. The powerful, but not freely accessible, NAG routines have been substituted by ODEPACK libraries, without any significant loss in precision. Moreover, we have developed a Graphical User Interface (GUI) which allows a friendly use of the code and a simpler implemen…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesGeneral Physics and AstronomyAstrophysicscomputer.software_genre01 natural sciencesPartícules (Física nuclear)Physics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesCode (cryptography)010306 general physicsGraphical user interfaceParthenopePhysicsCosmologiaPrimordial nucleosynthesi010308 nuclear & particles physicsProgramming languagebusiness.industryCosmologyNeutrino physicHigh Energy Physics - PhenomenologyHardware and ArchitecturebusinesscomputerAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe

2020

It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves,…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)reheatingmedia_common.quotation_subjectnucleosynthesis: big bangDark matterFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologydark matterGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesenergy: density010306 general physicsmedia_commonInflation (cosmology)Physics010308 nuclear & particles physicsGravitational wave[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]gravitational radiationAstronomyUniverseinflation: modelBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]history[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]black hole: primordialasymmetryAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Bounds on very low reheating scenarios after Planck

2015

9 pages.- 9 figures

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaEarly universeFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsUpper and lower boundsCosmologysymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesisPlanckPhysicsCosmology Big Bang NucleosynthesisOscillationHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologysymbolsProduction (computer science)High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsPrimordial abundance
researchProduct